CREATING A SIMPLE TO-DO LIST WEB APP
WITH CRUD OPERATIONS IN FLASK (PYTHON)

Executive Summary

This case study explains how to build a basic full-stack web application—a to-do list—using
Flask in Python. The focus is on explaining the backend logic for Create, Read, Update, and
Delete (CRUD) operations, along with route definitions, form handling, and database integration
using SQLite. This project is ideal for students learning web development, MVC architecture,
and backend workflows in Python.

1. Introduction

Web applications often rely on basic data operations such as creating and displaying lists, editing
data, and deleting it. A to-do list is a classic beginner project that teaches core concepts of
routing, HTML templates, HTTP methods (GET/POST), and database connectivity. This study
builds a minimalist task manager using Flask with step-by-step explanation of each part of the
logic.

2. Problem Definition
Build a Flask web app with the following functionality:
e Add anew task
e Display all tasks
o Update an existing task
o Delete a task

Tasks must be saved in a persistent database using SQLite.

3. Environment Setup

o Language: Python 3.x

https://lyamcoeducation.com/

e Framework: Flask
o Database: SQLite
o Templates: Jinja2 with HTML
o File Structure:
pgsql
CopyEdit
project/
| app.py
| tasks.db
| templates/

| Lindex.html

4. Backend Code and Logic Explanation

Basic Flask Setup and Database Model

python
CopyEdit
from flask import Flask, render template, request, redirect

from flask sqlalchemy import SQLAIchemy

app = Flask(__name)
app.config['SQLALCHEMY DATABASE URI'| ='sqlite:///tasks.db'
db = SQLAIchemy(app)

class Task(db.Model):

id = db.Column(db.Integer, primary key=True)
content = db.Column(db.String(200), nullable=False)

https://lyamcoeducation.com/

Explanation:
o Flask app setup with SQLite database

o Task model defines table structure with id and content

Create and Read (Display Tasks)
python
CopyEdit
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST"
task content = request.form['content']
new_task = Task(content=task content)
db.session.add(new _task)
db.session.commit()

return redirect('/")

tasks = Task.query.all()
return render template(‘index.html', tasks=tasks)
Logic:
e POST: Adds new task

e GET: Fetches all tasks and renders them with Jinja in HTML

Update Task

python
CopyEdit

@app.route('/update/<int:id>', methods=['GET', 'POST'])
def update(id):

https://lyamcoeducation.com/

task = Task.query.get or 404(id)

if request.method == "POST":
task.content = request.form['content']
db.session.commit()
return redirect('/")

return render template('update.html', task=task)

Delete Task

python

CopyEdit

@app.route('/delete/<int:id>")

def delete(id):
task = Task.query.get or 404(id)
db.session.delete(task)
db.session.commit()

return redirect('/")

5. HTML Template (index.html)
html
CopyEdit
<IDOCTYPE html>
<html>
<head><title>To-Do List</title></head>
<body>
<h1>Task List</h1>

<form method="POST">

https://lyamcoeducation.com/

—)}

<input type="text" name="content" placeholder="Enter task" required>
<button type="submit">Add</button>
</form>

{% for task in tasks %}
{{ task.content }}
Edit
Delete</1i>
{% endfor %}

</body>

</html>

6. Evaluation and Student Learning Points
Concepts Strengthened:

e Route handling (@app.route)

e Working with HTTP methods

e Connecting to and querying a database

e Using Jinja2 templating

e Structuring backend projects
Common Beginner Mistakes Solved:

o Not committing after DB operations

o Forgetting to create or migrate DB before querying

o Mixing GET and POST logic improperly

https://lyamcoeducation.com/

7. Suggested Enhancements
e Add due dates or priorities to tasks
e Add user login system (Flask-Login)
e Use AJAX to make app more dynamic

e Host on Heroku or Render for deployment practice

8. Conclusion

This project is an ideal starting point for web development students. It teaches not only CRUD
operations in Flask but also the logic flow of MV C architecture, form handling, and database
interaction in a clean and testable way.

9. References
e Flask Documentation (flask.palletsprojects.com)
e SQLAIchemy ORM Guide
e Mozilla Web Docs: HTML Forms
e Corey Schafer Flask Series (YouTube)

https://lyamcoeducation.com/

	Executive Summary
	1. Introduction
	2. Problem Definition
	3. Environment Setup
	4. Backend Code and Logic Explanation
	5. HTML Template (index.html)
	6. Evaluation and Student Learning Points
	7. Suggested Enhancements
	8. Conclusion
	9. References

