

https://yamcoeducation.com/

DESIGNING A STUDENT MARKS MANAGEMENT

SYSTEM IN C++ WITH FILE HANDLING

Executive Summary

This case study demonstrates how to build a console-based Student Marks Management System

using C++ and file handling techniques. It guides students through the core logic behind storing,

updating, retrieving, and deleting student records from a file. The project uses structures, menus,

basic file I/O, and conditional logic, helping students strengthen foundational C++ concepts and

understand real-world file operations in academic systems.

1. Introduction

Many college and university lab assignments require students to build small systems for

academic record management. These typically involve a menu-driven program and some form of

persistent storage. This project solves the problem using C++ structures and text/binary file

operations, aiming to provide students with clear logic and error-handling strategies.

2. Problem Definition

Design a simple system to manage:

 Adding new student records (Name, Roll No., Marks in 3 subjects)

 Displaying all records

 Searching by Roll Number

 Modifying an existing record

 Deleting a record

3. System Requirements

 Language: C++

 Concepts Covered: Structures, File Handling (fstream), Menus, Conditional Logic

https://yamcoeducation.com/

 Storage: Text file students.txt or binary file students.dat

 I/O: Standard CLI using cin, cout

4. Core Structure and Logic

cpp

CopyEdit

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

struct Student {

 int roll;

 string name;

 float marks1, marks2, marks3;

};

void addStudent() {

 Student s;

 ofstream fout("students.txt", ios::app);

 cout << "Enter Roll No, Name, Marks in 3 subjects:\n";

 cin >> s.roll >> s.name >> s.marks1 >> s.marks2 >> s.marks3;

 fout << s.roll << " " << s.name << " " << s.marks1 << " " << s.marks2 << " " << s.marks3 <<

"\n";

 fout.close();

}

Explanation:

https://yamcoeducation.com/

 struct Student stores individual records.

 ofstream in append mode writes new records to file.

 Basic CLI input is used; real-time error checks can be added.

5. File Read and Display Logic

cpp

CopyEdit

void displayAll() {

 Student s;

 ifstream fin("students.txt");

 cout << "Roll\tName\tMarks1\tMarks2\tMarks3\n";

 while (fin >> s.roll >> s.name >> s.marks1 >> s.marks2 >> s.marks3) {

 cout << s.roll << "\t" << s.name << "\t" << s.marks1 << "\t" << s.marks2 << "\t" <<

s.marks3 << "\n";

 }

 fin.close();

}

Other functions (search, delete, update) follow the pattern:

 Read all records

 Copy or modify them to a temporary file

 Replace the original file with the updated one

6. Menu and Main Loop

cpp

CopyEdit

int main() {

https://yamcoeducation.com/

 int choice;

 do {

 cout << "\n1. Add\n2. Display\n3. Exit\nEnter choice: ";

 cin >> choice;

 switch (choice) {

 case 1: addStudent(); break;

 case 2: displayAll(); break;

 case 3: break;

 default: cout << "Invalid option";

 }

 } while (choice != 3);

 return 0;

}

7. Evaluation and Common Pitfalls

Beginner Errors Solved:

 Forgetting to close file streams

 Overwriting files when not using ios::app

 Reading from files with wrong formatting

 Mixing text and binary modes

Learning Outcomes:

 Understanding how data is written and read in files

 Structuring CLI systems using menus

 Managing persistent storage without databases

https://yamcoeducation.com/

8. Suggested Enhancements

 Use binary files with read() and write() for faster access

 Implement average calculation and grade assignment logic

 Add password protection for access

 Use file locking or backup logic to prevent data corruption

9. Conclusion

This case study provides a step-by-step logic explanation of building a student marks system

using C++. It offers strong fundamentals in struct handling, file operations, and user interface

logic—all applicable to mini-projects and lab assignments.

10. References

 C++ Primer (Lippman, 5th Edition)

 GeeksforGeeks: File Handling in C++

 Cplusplus.com Documentation for fstream

	Executive Summary
	1. Introduction
	2. Problem Definition
	3. System Requirements
	4. Core Structure and Logic
	5. File Read and Display Logic
	6. Menu and Main Loop
	7. Evaluation and Common Pitfalls
	8. Suggested Enhancements
	9. Conclusion
	10. References

