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DESIGNING A STUDENT MARKS MANAGEMENT 

SYSTEM IN C++ WITH FILE HANDLING 

Executive Summary 

This case study demonstrates how to build a console-based Student Marks Management System 

using C++ and file handling techniques. It guides students through the core logic behind storing, 

updating, retrieving, and deleting student records from a file. The project uses structures, menus, 

basic file I/O, and conditional logic, helping students strengthen foundational C++ concepts and 

understand real-world file operations in academic systems. 

 

1. Introduction 

Many college and university lab assignments require students to build small systems for 

academic record management. These typically involve a menu-driven program and some form of 

persistent storage. This project solves the problem using C++ structures and text/binary file 

operations, aiming to provide students with clear logic and error-handling strategies. 

 

2. Problem Definition 

Design a simple system to manage: 

 Adding new student records (Name, Roll No., Marks in 3 subjects) 

 Displaying all records 

 Searching by Roll Number 

 Modifying an existing record 

 Deleting a record 

 

3. System Requirements 

 Language: C++ 

 Concepts Covered: Structures, File Handling (fstream), Menus, Conditional Logic 
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 Storage: Text file students.txt or binary file students.dat 

 I/O: Standard CLI using cin, cout 

 

4. Core Structure and Logic 

cpp 

CopyEdit 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

struct Student { 

    int roll; 

    string name; 

    float marks1, marks2, marks3; 

}; 

 

void addStudent() { 

    Student s; 

    ofstream fout("students.txt", ios::app); 

    cout << "Enter Roll No, Name, Marks in 3 subjects:\n"; 

    cin >> s.roll >> s.name >> s.marks1 >> s.marks2 >> s.marks3; 

    fout << s.roll << " " << s.name << " " << s.marks1 << " " << s.marks2 << " " << s.marks3 << 

"\n"; 

    fout.close(); 

} 

Explanation: 
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 struct Student stores individual records. 

 ofstream in append mode writes new records to file. 

 Basic CLI input is used; real-time error checks can be added. 

 

5. File Read and Display Logic 

cpp 

CopyEdit 

void displayAll() { 

    Student s; 

    ifstream fin("students.txt"); 

    cout << "Roll\tName\tMarks1\tMarks2\tMarks3\n"; 

    while (fin >> s.roll >> s.name >> s.marks1 >> s.marks2 >> s.marks3) { 

        cout << s.roll << "\t" << s.name << "\t" << s.marks1 << "\t" << s.marks2 << "\t" << 

s.marks3 << "\n"; 

    } 

    fin.close(); 

} 

Other functions (search, delete, update) follow the pattern: 

 Read all records 

 Copy or modify them to a temporary file 

 Replace the original file with the updated one 

 

6. Menu and Main Loop 

cpp 

CopyEdit 

int main() { 
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    int choice; 

    do { 

        cout << "\n1. Add\n2. Display\n3. Exit\nEnter choice: "; 

        cin >> choice; 

        switch (choice) { 

            case 1: addStudent(); break; 

            case 2: displayAll(); break; 

            case 3: break; 

            default: cout << "Invalid option"; 

        } 

    } while (choice != 3); 

    return 0; 

} 

 

7. Evaluation and Common Pitfalls 

Beginner Errors Solved: 

 Forgetting to close file streams 

 Overwriting files when not using ios::app 

 Reading from files with wrong formatting 

 Mixing text and binary modes 

Learning Outcomes: 

 Understanding how data is written and read in files 

 Structuring CLI systems using menus 

 Managing persistent storage without databases 
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8. Suggested Enhancements 

 Use binary files with read() and write() for faster access 

 Implement average calculation and grade assignment logic 

 Add password protection for access 

 Use file locking or backup logic to prevent data corruption 

 

9. Conclusion 

This case study provides a step-by-step logic explanation of building a student marks system 

using C++. It offers strong fundamentals in struct handling, file operations, and user interface 

logic—all applicable to mini-projects and lab assignments. 

 

10. References 

 C++ Primer (Lippman, 5th Edition) 

 GeeksforGeeks: File Handling in C++ 
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