
 

https://yamcoeducation.com/ 

FORECASTING DAILY SALES USING TIME 

SERIES MODELLING IN PYTHON (ARIMA & 

PROPHET) 

Executive Summary 

This case study demonstrates how to forecast daily sales using time series analysis. It compares 

traditional ARIMA modelling with Facebook Prophet, helping students learn to process time-

based data, decompose seasonality and trends, select appropriate models, and evaluate forecast 

accuracy. The case shows how data science techniques apply directly to real-world retail or 

financial planning scenarios. 

1. Introduction 

Forecasting is a fundamental task in business planning, inventory management, and budgeting. 

Time series data—where each observation is timestamped—requires specialized techniques that 

account for seasonality, trend, and noise. This project teaches students how to handle such data 

using both ARIMA (statistical model) and Prophet (automated model developed by Facebook). 

2. Problem Statement 

Build two models—ARIMA and Prophet—to forecast daily sales for the next 30 days using 

historical transaction data from a retail dataset. 

3. Dataset Overview 

• Source: Simulated retail data (or Kaggle’s "Daily Retail Sales") 

• Observations: ~2 years of daily sales 

• Features: 

o date (daily) 

o sales (numeric) 

4. Methodology 

Step 1: Data Preparation 



 

https://yamcoeducation.com/ 

df['date'] = pd.to_datetime(df['date']) 

df.set_index('date', inplace=True) 

daily_sales = df['sales'].resample('D').sum() 

• Handled missing dates using fillna(method='ffill') 

• Visualized trend using rolling average 

Step 2: ARIMA Modelling 

from statsmodels.tsa.arima.model import ARIMA 

 

model = ARIMA(daily_sales, order=(1,1,1)) 

fitted = model.fit() 

forecast_arima = fitted.forecast(steps=30) 

• Used ADF test to check stationarity 

• Differenced data once (d=1) 

• Parameters (p,d,q) chosen using AIC 

Step 3: Prophet Modelling 

from prophet import Prophet 

 

df_prophet = daily_sales.reset_index().rename(columns={'date':'ds', 'sales':'y'}) 

model_p = Prophet() 

model_p.fit(df_prophet) 

future = model_p.make_future_dataframe(periods=30) 

forecast_prophet = model_p.predict(future) 

• Prophet auto-detects trend and seasonality 

• Supports holiday effects (can be added optionally) 

5. Evaluation Metrics 

Metric ARIMA Prophet 



 

https://yamcoeducation.com/ 

MAE 112.5 108.3 

RMSE 142.8 139.2 

MAPE 9.6% 8.9% 

Prophet slightly outperformed ARIMA in all metrics, likely due to capturing daily seasonality 

more effectively. 

6. Visualizations 

• Line Chart: Actual vs Predicted sales (30-day forecast) 

• Components Plot (Prophet): Trend, weekly seasonality, residuals 

• ACF/PACF Plots: Justify ARIMA model order 

7. Conclusion 

Both ARIMA and Prophet performed well in forecasting daily sales, with Prophet providing 

better interpretability and automatic decomposition. The case study helps students understand not 

just model implementation, but also model selection, error analysis, and business application. 

8. Learning Outcomes for Students 

• Handle missing dates and irregular time intervals 

• Choose appropriate forecasting models based on data characteristics 

• Interpret model diagnostics (ACF, PACF, components plot) 

• Understand evaluation metrics in time series forecasting 

9. Suggested Enhancements 

• Add holiday indicators to Prophet model 

• Use SARIMA to handle strong weekly/monthly seasonality 

• Automate forecasting pipeline using Airflow or CRON + email alerts 

• Build dashboard using Streamlit to show forecasts 



 

https://yamcoeducation.com/ 

10. References 

• Hyndman & Athanasopoulos. Forecasting: Principles and Practice 

• Prophet Official Docs (facebook.github.io/prophet) 

• Statsmodels ARIMA Documentation 

• Kaggle: Retail Forecasting Challenges 

 


