
https://yamcoeducation.com/

IMPLEMENTING DIJKSTRA’S ALGORITHM IN
JAVASCRIPT FOR ROUTE OPTIMIZATION

Executive Summary
This case study explores the implementation of Dijkstra’s shortest path algorithm using
JavaScript. The project walks students through the logic of graph representation, priority queue
simulation, and distance updates. It also includes a visualization suggestion using HTML Canvas
to deepen conceptual understanding. By tracing the algorithm step-by-step and explaining the
logic in a browser-compatible language, students develop a clear grasp of how optimal
pathfinding works in real-world applications like maps, games, and routing systems.

1. Introduction
Dijkstra’s algorithm is widely used in computer science to determine the shortest path between
nodes in a graph. Understanding this algorithm enhances students' foundation in data structures,
particularly graphs and priority queues. JavaScript provides an accessible and interactive
platform for demonstrating this algorithm in a web environment.

2. Problem Definition
The objective is to:

 Implement Dijkstra’s algorithm in JavaScript
 Use an adjacency list to represent a weighted graph
 Calculate the shortest path from a source node to all other nodes
 Optionally visualize the process using browser-based rendering

3. Graph Representation
javascript
CopyEdit
const graph = {

https://yamcoeducation.com/

A: { B: 2, C: 4 },
B: { A: 2, C: 1, D: 7 },
C: { A: 4, B: 1, D: 3 },
D: { B: 7, C: 3 }
};
Explanation:

 The graph is stored as a dictionary of dictionaries.
 Each key represents a node, and its value is an object showing connected nodes with

weights.

4. Dijkstra’s Algorithm in JavaScript
javascript
CopyEdit
function dijkstra(graph, start) {
const distances = {};
const visited = {};
const previous = {};

// Initialize all distances to infinity
for (let node in graph) {
distances[node] = Infinity;
previous[node] = null;
}
distances[start] = 0;

while (Object.keys(visited).length < Object.keys(graph).length) {
let minNode = null;

https://yamcoeducation.com/

for (let node in distances) {
if (!visited[node]) {
if (minNode === null || distances[node] < distances[minNode]) {
minNode = node;
}
}
}

for (let neighbor in graph[minNode]) {
let newDist = distances[minNode] + graph[minNode][neighbor];
if (newDist < distances[neighbor]) {
distances[neighbor] = newDist;
previous[neighbor] = minNode;
}
}

visited[minNode] = true;
}

return { distances, previous };
}

5. Logic Explanation
 distances: Tracks shortest known distances from source
 visited: Ensures nodes are processed only once
 previous: Records the optimal path

https://yamcoeducation.com/

 Main loop:
o Selects unvisited node with the smallest distance
o Updates distances for neighbors if shorter paths are found

6. Example Output
Using source = A:
javascript
CopyEdit
const result = dijkstra(graph, 'A');
console.log(result.distances);
// { A: 0, B: 2, C: 3, D: 6 }

console.log(result.previous);
// { A: null, B: 'A', C: 'B', D: 'C' }
Shortest path to D: A → B → C → D

7. Common Student Errors
 Treating graph as unweighted
 Forgetting to mark visited nodes
 Incorrectly updating the shortest distance
 Failing to backtrack using previous to reconstruct paths

8. Suggested Enhancements
 Add a Min-Heap Priority Queue to improve efficiency from O(n²) to O(n log n)
 Use HTML Canvas to draw the graph and animate node visits

https://yamcoeducation.com/

 Add path reconstruction function:
javascript
CopyEdit
function getPath(previous, end) {
const path = [];
while (end) {
path.unshift(end);
end = previous[end];
}
return path;
}

9. Conclusion
This case study demonstrates how JavaScript can be used not only for frontend development but
also for teaching core algorithmic logic. Implementing Dijkstra’s algorithm provides students
with experience in graph handling, iterative logic, and optimization strategies essential for both
academic and applied computing.

10. References
 E. W. Dijkstra (1959). A note on two problems in connexion with graphs
 MDN Web Docs – JavaScript Loops and Objects
 FreeCodeCamp – JavaScript Graph Algorithms
 GeeksforGeeks – Dijkstra’s Algorithm Implementation

