
https://yamcoeducation.com/

UNDERSTANDING RECURSION WITH THE
TOWER OF HANOI PROBLEM IN JAVA

Executive Summary
This case study breaks down the recursive logic behind the Tower of Hanoi problem—a
classic example for teaching recursion and stack memory behavior. Implemented in
Java, the solution includes step-by-step explanations of each recursive call, visual flow
representation, and a dry-run for 3-disk and 4-disk scenarios. Students are guided to
visualize recursion depth, base cases, and the call stack, making it ideal for both exam
preparation and logic-building assignments.

1. Introduction
Recursion is a fundamental but often misunderstood concept in programming. Tower of
Hanoi provides a structured and visual method for learning recursive problem-solving.
The challenge is to move a stack of disks from one rod to another, obeying three rules:

1. Only one disk can be moved at a time.
2. A larger disk may not be placed on a smaller disk.
3. Only the top disk may be moved.

2. Problem Definition
The task: Move n disks from source rod A to destination rod C using auxiliary rod B.
Key challenges students face:

 Misunderstanding how recursive calls build upon smaller subproblems
 Difficulty tracing the control flow and call returns
 Confusion around parameters and how the function progresses



https://yamcoeducation.com/

3. Java Code and Logic Explanation
java
CopyEdit
public class TowerOfHanoi {

static void solveHanoi(int n, char source, char auxiliary, char destination) {
if (n == 1) {

System.out.println("Move disk 1 from " + source + " to " + destination);
return;

}

solveHanoi(n - 1, source, destination, auxiliary);
System.out.println("Move disk " + n + " from " + source + " to " + destination);
solveHanoi(n - 1, auxiliary, source, destination);

}

public static void main(String[] args) {
int n = 3;
solveHanoi(n, 'A', 'B', 'C');

}
}
Explanation:

 Base Case: When n == 1, move the disk directly.
 Recursive Case:

1. Move n-1 disks from source to auxiliary.
2. Move the nth disk to destination.
3. Move n-1 disks from auxiliary to destination.



https://yamcoeducation.com/

Each step relies on the assumption that a smaller version of the problem can be solved
recursively.

4. Dry Run: 3 Disks
plaintext
CopyEdit
solveHanoi(3, A, B, C)

├ solveHanoi(2, A, C, B)

│ ├ solveHanoi(1, A, B, C) → Move disk 1 from A to C

│ └ Move disk 2 from A to B
│ └ solveHanoi(1, C, A, B) → Move disk 1 from C to B
└ Move disk 3 from A to C
└ solveHanoi(2, B, A, C)

├ solveHanoi(1, B, C, A) → Move disk 1 from B to A

└ Move disk 2 from B to C
└ solveHanoi(1, A, B, C) → Move disk 1 from A to C

Total Moves = 2n−1=72^n - 1 = 72n−1=7

5. Stack Memory Illustration
For n = 3, the call stack will grow to a maximum of 3 nested calls. When each recursive
branch completes, the stack unwinds in reverse order, completing each move.

6. Evaluation and Learning Outcomes
Common Mistakes Addressed:

 Students often reverse parameters in recursive calls.



https://yamcoeducation.com/

 Forget to print the move after the first recursive call.
 Misplace the base case.

Pedagogical Benefit:
 Improves understanding of recursion depth
 Builds confidence in writing nested logic
 Develops debugging skills using print statements for tracing

7. Enhancements
 Add step counter using a global variable
 Create a GUI version using Java Swing
 Allow user input for number of disks via console or dialog
 Store steps in a list for export or animation

8. Conclusion
The Tower of Hanoi problem provides a structured, recursive problem that teaches
critical thinking and control flow analysis. By implementing and tracing it in Java,
students gain not just syntax practice but deep logic development skills.

9. References
 Cormen, T.H., Leiserson, C.E., Rivest, R.L. (2009). Introduction to Algorithms
 Oracle Java Documentation (Recursion and Stack Frames)
 Towers of Hanoi – MIT OpenCourseWare (CS Introduction)
 GeeksforGeeks: Tower of Hanoi Algorithm Explanation


