UNDERSTANDING RECURSION WITH THE
TOWER OF HANOI PROBLEM IN JAVA

Executive Summary

This case study breaks down the recursive logic behind the Tower of Hagaiproblem
classic example for teaching recursion and stack memory behavior i
Java, the solution includes step-by-step explanations of each rec
representation, and a dry-run for 3-disk and 4-disk scenarios. S
visualize recursion depth, base cases, and the call stack, makin
preparation and logic-building assignments.

deal for both 4

1. Introduction

Recursion is a fundamental but often misundersto
Hanoi provides a structured and visual
The challenge is to move a stack of

ming. Tower of
roblem-solving.
obeying three rules:

1. Only one disk can be moy,
2. A larger disk may not
3. Only the top disk may

d A to destination rod C using auxiliary rod B.
ursive calls build upon smaller subproblems

Ity tracing the control flow and call returns

jon around parameters and how the function progresses

https://yamcoeducation.com/

3. Java Code and Logic Explanation
java
CopyEdit

public class TowerOfHanoi {

static void solveHanoi(int n, char source, char auxiliary, char destinatjgg
if (n==1){
System.out.printin("Move disk 1 from " + source + " to "

return;

solveHanoi(n - 1, source, destination, auxilia
System.out.printin("Move disk " + n + " from " stination);

solveHanoi(n - 1, auxiliary, sour

public static void main(Stri
intn=3;

solveHanoi(n

, move the disk directly.
sive Case:
ove n-1 disks from source to auxiliary.
the nth disk to destination.

3. Move n-1 disks from auxiliary to destination.

https://yamcoeducation.com/

Each step relies on the assumption that a smaller version of the problem can be solved
recursively.

4. Dry Run: 3 Disks
plaintext

CopyEdit

solveHanoi(3, A, B, C)

- solveHanoi(2, A, C, B)
| - solveHanoi(1, A, B, C) — Move disk 1 from A t
| L Move disk 2 from A to B
| L solveHanoi(1, C, A, B) — Move disk 1 from
L Move disk 3 from Ato C
L solveHanoi(2, B, A, C)
I- solveHanoi(1, B, C, A) —
L Move disk 2 from B to C
L solveHanoi(1, A, B, C)

Total Moves = 2n-1=72*n -1 =

branch ds in reverse order, completing each move.

ijon and Learning Outcomes
Common Mis Addressed:

« Students often reverse parameters in recursive calls.

https://yamcoeducation.com/

» Forget to print the move after the first recursive call.
» Misplace the base case.
Pedagogical Benefit:
» Improves understanding of recursion depth
» Builds confidence in writing nested logic

» Develops debugging skills using print statements for tracin

/. Enhancements
» Add step counter using a global variable
» Create a GUI version using Java Swing

e Allow user input for number of disks via co or dialog

» Store steps in a list for export or agi

8. Conclusion

The Tower of Hanoi problem [d, recursive problem that teaches

., Leiserso ., Rivest, R.L. (2009). Introduction to Algorithms
n (Recursion and Stack Frames)
s of Hanoi — MIT OpenCourseWare (CS Introduction)

orGeeks: Tower of Hanoi Algorithm Explanation

https://yamcoeducation.com/

